大家好~本期推荐几个pandas高效的数据处理功能(持续更新中),希望对大家有所帮助:字典创建Dataframe列拆分(split/extract)列合并(cat)左右填充(pad)按类型Filtercolumn(select_dtypes)sort(rank)1.创建字典Dataframedf_dict={'name':['Alice_001','Bob_002','Cindy_003','Eric_004','Helen_005','Grace_006'],'sex':['女','男','女','男','女','男'],'数学':[90,89,99,78,97,93],'英语':[95,94,80,94,94,90]}#[1]。直接写参数test_dictdf=pd.DataFrame(df_dict)#[2]。字典类型赋值df=pd.DataFrame(data=df_dict)2.ColumnSplit(split/extract)字符拆分:df1[['name','id']]=df1['name'].str.split('_',2,expand=True)正则表达式拆分:df2=df.copy()df2['name2']=df2['name'].str.extract('([A-Z]+[a-z]+)')df2['id2']=df2['名称'].str.extract('(\d+)')3。列合并(cat)自定义连接器:df1["name_id"]=df1["name"].str.cat(df1["id"],sep='_'*3)合并某列的输出:df1["名称"].str.cat(sep='*'*5)4.左右填充:df1["id"]=df1["id"].str.pad(10,fillchar="*")#相当于ljust()df1["id"]=df1["id"].str.rjust(10,fillchar="*")右填充:df1["id"]=df1["id"].str.pad(10,side="right",fillchar="*")双方:df1["id"]=df1["id"].str.pad(10,side="both",fillchar="*")5.根据类型过滤数值列filtercolumn(select_dtypes):df1.select_dtypes(include=['float64','int64'])Filterobjectcolumn:df1.select_dtypes(include=['object'])6.排序(rank)英语成绩排名:df1['e_rank']=df1['english'].rank(method='min',ascending=False)94分的有3个,所以3个并列第二。以上就是本期为大家整理的全部内容,喜欢的朋友赶紧行动起来吧!点赞,点击观看分享,让更多人知道
