简介:今天,首席执行官注意到与您分享人工智能创建所需的知识。如果您可以解决您现在面临的问题,请不要忘记注意此网站。让我们现在开始!
数学基础:高级数学,线性代数,概率理论统计和随机过程,离散数学,数值分析。数学的基础知识包含解决智能问题的基本思想和方法,它也是理解复杂算法的基本要素。在对各种人工智能技术的最终分析中,各种人工智能技术基于数学模型。要了解人工智能,我们必须首先掌握必要的数学基础知识。线性代数将正式研究对象和统计定律的概率理论。
算法的积累:人工神经网络,支持向量机,遗传算法和其他算法;当然,各个领域都需要算法,例如允许机器人在环境导航和地图中研究大满贯。在矮个子中。
您需要掌握至少一种编程语言,例如C语言,MATLAB等。所有内容之后,该算法的实现仍需要编程;如果它深入了硬件,那么一些基本课程至关重要。
扩展信息:
人工智能(人工智能),英语缩写是AI。这是一门新的技术科学,研究和开发智能理论,方法,技术和应用系统,用于模拟,扩展和扩展。
人工智能是计算机科学的一个分支。它试图了解智力的本质,并生产一种可以响应人类智能的新智能机器。自然语言处理和专家系统。
自人工智能诞生以来,理论和技术已经越来越成熟,并且应用领域继续扩展。可以想象,未来人工智能带来的技术产品将是人类智慧的“容器”。兵工智能可以模拟人类意识和思维的信息过程。人工智能不是人类的智力,但它可以像人类的智力一样思考。人类,可能会超越人类的智力。
人工智能是一门具有挑战性的科学。那些从事这项工作的人必须了解计算机知识,心理学和哲学。人工智能包括一门非常广泛的科学科学。它由不同的领域组成,例如机器学习,计算机视觉等。总的来说,人工智能研究的主要目标之一是使机器能够竞争一些通常需要人类智能才能完成工作的人类智能。但是不同的时代。不同的人对这项“复杂工作”有不同的了解。在2017年12月,人工智能被选为“ 2017年中国十大媒体”。
参考材料:Baidu百科全书 - 官方情报:计算机科学的分支
①机器学习的基础是数学。入门AI必须掌握一些必要的数学基础,但并非必须学习所有数学知识。
②需要应用数据分析,但是它不是从0开始的数据分析,而是数据挖掘或与数据科学相关的内容。例如,挖掘数据,相关数据挖掘工具等。
可以正式从机器学习算法的原理中正式了解上述数学和数据挖掘的基本知识。
这是学习算法的额外点。
④最后,我们需要对人工智能有一个全球的理解,包括机器学习和深度学习的两个主要模块,相关的算法原理,推导和应用程序掌握以及最重要的算法思想。
您还可以看新秀巢的免费公共课程。他们的Ali算法专家克里斯(Chris)的上述内容提到他们也可以是私人。或者您可以搜索Cain Bird's Nest的官方网站。
首先,您必须掌握必要的数学基础知识。具体,包括:
线性代数:如何形成研究对象?
概率理论:如何描述统计定律?
数学统计:如何看大?
优化理论:如何找到最佳解决方案?
信息理论:如何量化不确定性?
表格逻辑:如何实现抽象推理?
线性代数:如何形成研究对象?
实际上,线性代数不仅是人工智能的基础,而且是现代数学和现代数学作为主要分析方法的基础。,线性代数的核心意义是提供一种抽象的观点来对待世界:所有事物都可以抽象成某些特征的组合,并在预设规则定义的框架下,obvers保留动态方式。
从对抽象概念而不是特定数学公式的解释中,线性代数的要点如下:线性代数的本质是将特定的事物抽象成数学对象,并描述静态和动态的特征;矢量的本质是介质中的n维线性空位点;线性转换将矢量或坐标系的变化描述为参考系统,可以由矩阵表示。矩阵的特征值和特征向量描述了变化的速度和方向。
简而言之,线性代数是用于人工智能的基本工具集,例如为高数学添加方法。
概率理论:如何描述统计定律?
除线性代数外,概率理论也是人工智能研究的必要数学基础。随着连通性学校的兴起,概率统计数据已取代了数学逻辑,并成为人工智能研究的主流工具。数据爆炸,数据爆炸-Type的增长-Type增长计算功率指数得到了增强,概率理论在机器学习中起着核心作用。
像相同的线性代数一样,概率理论也代表着一种观察世界的方式,注意力的重点是无处不在的可能性。频率学校认为优先级分布是固定的,并且模型参数必须由最大值计算。轻度估计;贝叶斯学校认为优先级分布是随机的,并且必须通过后测试概率最大化模型参数。正态分布是最重要的。随机变量分布。
数学统计:如何看大?
在人工智能的研究中,数学统计学也是必不可少的。基本统计理论有助于解释机器学习算法和数据挖掘的结果。只有做出合理的解释才能反映数据的价值。数学统计研究基于获得的数据或实验的随机现象,并对研究对象的客观定律做出合理的估计和判断。
尽管数学统计数据将概率理论用作理论基础,但两者之间的方法存在基本差异。概率理论的前提是,随机变量的分布是已知的,并且根据随机变量的特征和定律,根据该变量的特征和定律。已知分布;数学和物理统计的研究对象是未知分布的随机变量。研究方法是独立重复随机变量并重复独立观察,并根据获得的观察结果推断原始分布。
在严格但直观的事物中:可治愈的统计数据可以被视为反向概率理论。数学统计的任务是根据观察到的样本推断总体性质。推论工具是统计数据,统计数据是样本的函数,它是一个随机变量;包括点估计和间隔估计值;假设测试被随机提取的样品接受或拒绝,则通常用于估计机器学习模型的概括错误率。
优化理论:如何找到最佳解决方案?
本质上,人工智能的目标是优化:在复杂的环境和多体互动中制定最佳决策。几乎所有人工智能问题都将最终用于解决优化问题的解决方案,因此优化理论也是基本的。人工智能所需的知识。优化理论研究的问题是确定给定目标函数的最大值(最小值)是否存在,并找到目标函数的值为最大值(最小值)。如果给定目标功能被视为山脉,优化的过程是判断峰的位置并找到达到峰值路径的过程。
在正常情况下,优化问题是解决目标函数的最小值而没有约束。在在线搜索中,在寻找最小值时确定搜索方向需要使用目标函数的第一阶和第二阶指南;该算法的想法是首先确定搜索步骤,然后确定搜索方向;人工神经网络代表的灵感算法是另一种重要的优化方法。
信息理论:如何量化不确定性?
近年来,科学研究不断确认不确定性是客观世界的基本属性。换句话说,上帝确实掷骰子。不确定的世界只能由概率模型描述,这有助于信息的诞生理论。
“信息熵”的概念使用“信息熵”来解释通信源中传递的信息量的数量和效率以及通信中传递的信息数量。
简而言之,信息理论在客观世界中以不确定性处理。条件熵和信息增益是分类的重要参数;KL分散程度用于描述两个不同概率分布之间的差异。最大熵原则是分类问题的摘要。
表格逻辑:如何实现抽象推理?
1956年举行的Datmouth会议宣布了人工智能的诞生。在人工智能时期,创始人,包括约翰·麦卡锡,赫伯特·西蒙,马尔文主义者和其他未来的图灵奖奖得主,包括人类的思想。“通常,理想的人工智能应该具有抽象的学习,推理和归纳能力,并且其一般性将比解决特定问题(例如国际象棋或往事)要强得多。
如果将认知过程定义为符号的逻辑操作,则人工智能的基础是逻辑的。谓词逻辑是知识表示的主要方法;基于谓词逻辑系统可以通过自动推理能力实现人工智能;认知的本质是计算人工智能的基本概念。
目前,人工智能专业的主要学习内容是:机器学习,人工智能介绍(搜索方法等),生物演化,图像识别,自然语言处理,语义网络,游戏理论等。所需的前课程是主要:信号处理,线性代数,微积分,编程(最好是数据结构基础)等。
1.基本数学知识:线性代数,概率理论,统计和地图理论;
2.基本的计算机知识:操作系统,Linux,网络,编译原理,数据结构,数据库;
3.编程语言基础:C/C ++,Python,Java;
4.人工智能的基础知识:ID3,C4.5,逻辑回归,SVM,分类器,其他算法,性质和其他算法之间的差异;
5.工具的基本知识:OpenCV,Matlab,Caffe,等。
我们知道,该国还引入了一些政策,以支持人工智能的发展。人工智能处于发展的股息时期。人工智能的火灾是两年,因此无论是上市公司还是一些中小型企业,对人工智能才能的需求都非常大。
人工智能是计算机科学的一个分支。它试图了解智力的本质,并生产一种可以响应人类智能的新智能机器。自然语言处理和专家系统。
自人工智能诞生以来,理论和技术已经越来越成熟,并且应用领域继续扩展。可以想象,未来人工智能带来的技术产品将是人类智慧的“容器”。在当前,学习人工智能是现在的好时机!
结论:以上是介绍了人工智能创造知识的主要CTO注释的所有内容。我希望这对每个人都会有所帮助。如果您仍然想了解有关此信息的更多信息,请记住收集并关注此网站。