机器学习有很多方面,当我开始研究和学习它时,我发现了各种“备忘单”,它们简洁地列出了该主题的关键知识点。最后整理了20多张机器学习相关的cheatsheet,有的我经常参考,有的我也受益匪浅。这篇文章包含我在网上找到的27个备忘单,如果您发现任何我遗漏的内容,请告诉我。机器学习领域的变化很快,我认为这些可能很快就会过时,但至少现在,它们仍然很流行。机器学习这里有一些有用的机器学习算法流程图和表格,我只包含了我发现的最全面的那些。神经网络架构来源:http://www.asimovinstitute.org/neural-network-zoo/神经网络园MicrosoftAzure算法流程图来源:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet机器学习算法来源MicrosoftAzureMachineLearningStudioSAS算法流程图:http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/SAS:我应该使用哪种机器学习算法?算法总结来源:http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/机器学习算法指南来源:http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/哪个***是已知的机器学习算法?算法优缺点出处:https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friendPython当然网上也有很多关于Python的资源,本节我仅包括我见过的最好的备忘单。算法来源:https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/Python基础来源:http://datasciencefree.com/python.pdf来源:https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEANumpy来源:https://www.dataquest.io/blog/numpy-cheat-sheet/来源:http://datasciencefree.com/numpy.pdf来源:https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE来源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynbPandas来源:http://datasciencefree.com/pandas.pdf来源:https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U来源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynbMatplotlib来源:https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet来源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynbScikit学习来源:https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk来源:http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html来源:https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynbTensorflow来源:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynbPytorch来源:https://github.com/bfortuner/pytorch-cheatsheet数学如果你想了解机器学习,你需要对统计学(尤其是概率)、线性代数和一些微积分有扎实的了解我在本科时辅修了数学,但我确实需要复习。这些备忘单提供了机器学习算法背后您需要了解的大部分数学知识。概率来源:http://www.wzchen.com/s/probability_cheatsheet.pdfProbabilityCheatSheet2.0LinearAlgebra来源:https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf四页解释线性代数统计来源:http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf统计备忘单微积分来源:http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N微积分备忘单
