自动化的机器学习:5个常用AutoML 框架介绍♀?♀AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源AutoML 框架。AutoML框架执行的任务可以被总结成以下几点:预处理和清理数据。选择并构建适当的特征。选择合适的模型。优化模型超参数。设计神经网络的拓扑结构(如果使用深度学习)。机器学习模型的后处理。结果的可视化和展示。在本文中,我们将介绍以下5 个开源 autoML 库或框架:Auto-SklearnTPOTHyperopt SklearnAuto-KerasH2O AutoML1、Auto-SklearnAuto-sklearn 是一个开箱即用的自动化机器学习库。auto-sklearn 以 scikit-learn 为基础,自动搜索正确的学习算法并优化其超参数。通过元学习、贝叶斯优化和集成学习等搜索可以获得最佳的数据处理管道和模型。它可以处理大部分繁琐的工作,例如预处理和特征工程技术:One-Hot 编码、特征归一化、降维等。安装:#pippip install auto-sklearn#condaconda install -c conda-forge auto-sklearn因为进行了大量的封装,所以使用的方法sklearn基本一样,以下是样例代码:import sklearn.datasetsimport sklearn.metricsimport autosklearn.regressionimport matplotlib.pyplot as pltX, y = sklearn.datasets.load_diabetes(return_X_y=True)X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(X, y, random_state=1)automl = autosklearn.regression.AutoSklearnRegressor( time_left_for_this_task=120, per_run_time_limit=30, tmp_folder='/tmp/autosklearn_regression_example_tmp',)automl.fit(X_train, y_train, dataset_name='diabetes')代码地址:https://github.com/automl/aut...2、TPOTTPOT(Tree-based Pipeline Optimization Tool)是一个 Python 自动化机器学习工具,它使用遗传算法优化对机器学习的流程进行优化。它也是基于 Scikit-Learn 提供的方法进行数据转换和机器学习模型的构建,但是它使用遗传算法编程进行随机和全局搜索。以下是TPOT 搜索流程:安装:#pippip insall tpot#condaconda install -c conda-forge tpot样例代码:from tpot import TPOTClassifierfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_irisimport numpy as npiris = load_iris()X_train, X_test, y_train, y_test = train_test_split(iris.data.astype(np.float64), iris.target.astype(np.float64), train_size=0.75, test_size=0.25, random_state=42)tpot = TPOTClassifier(generations=5, population_size=50, verbosity=2, random_state=42)tpot.fit(X_train, y_train)print(tpot.score(X_test, y_test))tpot.export('tpot_iris_pipeline.py')代码地址:https://github.com/EpistasisL...3、HyperOpt-Sklearn:HyperOpt-Sklearn 是 HyperOpt 的包装器,可以将 AutoML 和 HyperOpt 与 Scikit-Learn 进行整合,这个库包含了数据预处理的转换和分类、回归算法模型。文档中介绍说:它专为具有数百个参数的模型进行大规模优化而设计 并允许跨多核和多台机器扩展优化过程。安装:pip install hyperopt样例代码:from pandas import read_csvfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import mean_absolute_errorfrom hpsklearn import HyperoptEstimatorfrom hpsklearn import any_regressorfrom hpsklearn import any_preprocessingfrom hyperopt import tpe# load datasetiris = load_iris()X_train, X_test, y_train, y_test = train_test_split(iris.data.astype(np.float64), iris.target.astype(np.float64), train_size=0.75, test_size=0.25, random_state=42)model = HyperoptEstimator(regressor=any_regressor('reg'), preprocessing=any_preprocessing('pre'), loss_fn=mean_absolute_error, algo=tpe.suggest, max_evals=50, trial_timeout=30)model.fit(X_train, y_train)# summarize performancemae = model.score(X_test, y_test)print("MAE: %.3f" % mae)# summarize the best modelprint(model.best_model())代码地址:https://github.com/hyperopt/h...4、AutoKerasAutoKeras 是一个基于 Keras 的 AutoML 系统,只需几行代码就可以实现神经架构搜索(NAS)的强大功能。它由德克萨斯 A&M 大学的 DATA 实验室开发,以 TensorFlow的tf.keras API 和Keras为基础进行实现 。AutoKeras 可以支持不同的任务,例如图像分类、结构化数据分类或回归等。安装:pip install autokeras样例代码:import numpy as npimport tensorflow as tffrom tensorflow.keras.datasets import mnistimport autokeras as ak#Load dataset(x_train, y_train), (x_test, y_test) = mnist.load_data()print(x_train.shape) # (60000, 28, 28)print(y_train.shape) # (60000,)print(y_train[:3]) # array([7, 2, 1], dtype=uint8)# Initialize the image classifier.clf = ak.ImageClassifier(overwrite=True, max_trials=1)# Feed the image classifier with training data.clf.fit(x_train, y_train, epochs=10)# Predict with the best model.predicted_y = clf.predict(x_test)print(predicted_y)# Evaluate the best model with testing data.print(clf.evaluate(x_test, y_test))代码地址:https://github.com/keras-team...5、H2O AutoML:H2O 的 AutoML 可用于在用户指定的时间限制内自动训练和调整许多模型。H2O 提供了许多适用于 AutoML 对象(模型组)以及单个模型的可解释性方法。可以自动生成解释,并提供一个简单的界面来探索和解释 AutoML 模型。安装:pip insall h2oH2O可以更详细的说是一个分布式的机器学习平台,所以就需要建立H2O的集群,这部分的代码是使用的java开发的,就需要安装jdk的支持。在安装完成JAVA后,并且环境变量设置了java路径的情况下在cmd执行以下命令:java -jar path_to/h2o.jar就可以启动H2O的集群,就可以通过Web界面进行操作,如果想使用Python代码编写,可以使用以下示例import h2oh2o.init()from h2o.automl import H2OAutoMLchurn_df = h2o.import_file('https://raw.githubusercontent.com/srivatsan88/YouTubeLI/master/dataset/WA_Fn-UseC_-Telco-Customer-Churn.csv')churn_df.typeschurn_df.describe()churn_train,churn_test,churn_valid = churn_df.split_frame(ratios=[.7, .15])churn_trainy = "Churn"x = churn_df.columnsx.remove(y)x.remove("customerID")aml = H2OAutoML(max_models = 10, seed = 10, exclude_algos = ["StackedEnsemble", "DeepLearning"], verbosity="info", nfolds=0)!nvidia-smiaml.train(x = x, y = y, training_frame = churn_train, validation_frame=churn_valid)lb = aml.leaderboardlb.head()churn_pred=aml.leader.predict(churn_test)churn_pred.head()aml.leader.model_performance(churn_test)model_ids = list(aml.leaderboard['model_id'].as_data_frame().iloc[:,0])#se = h2o.get_model([mid for mid in model_ids if "StackedEnsemble_AllModels" in mid][0])#metalearner = h2o.get_model(se.metalearner()['name'])model_idsh2o.get_model([mid for mid in model_ids if "XGBoost" in mid][0])out = h2o.get_model([mid for mid in model_ids if "XGBoost" in mid][0])out.paramsout.convert_H2OXGBoostParams_2_XGBoostParams()outout_gbm = h2o.get_model([mid for mid in model_ids if "GBM" in mid][0])out.confusion_matrix()out.varimp_plot()aml.leader.download_mojo(path = "./")代码地址:https://github.com/h2oai/h2o-3总结在本文中,我们总结了 5 个 AutoML 库以及它如何检查机器学习进行任务的自动化,例如数据预处理、超参数调整、模型选择和评估。除了这5个常见的库以外还有一些其他 AutoML 库,例如 AutoGluon、MLBoX、TransmogrifAI、Auto -WEKA、AdaNet、MLjar、TransmogrifAI、Azure Machine Learning、Ludwig等。https://www.overfit.cn/post/a5f1160b23ad4fea914ed394254f845a作者:Abonia Sojasingarayar
