当前位置: 首页 > 网络应用技术

人工智能制造的原则是什么(2023年的最新答案)

时间:2023-03-06 23:54:07 网络应用技术

  简介:许多朋友询问有关人工智能制造原理的问题。本文的首席执行官注释将为您提供详细的答案,以供您参考。我希望这对每个人都会有所帮助!让我们一起看看!

  人工智能的原则是简单的描述:

  人工智能=数学计算。

  机器的智能取决于“算法”。从本质上讲,人们发现电路已打开和关闭,可以用1和0表示。不同的安排更改可以代表许多事物,例如颜色,形状和字母。与逻辑组件(Triode)结合,“输入(按Switch Button)-down(当前通过该线路) - 输出(轻度输出)开启)”

  这个模型。

  想象一下在家中的双控制开关。

  为了实现更复杂的计算,它最终成为“大型集成电路” -Chip。

  电路逻辑逐层嵌套。将图层封装后,更改当前状态的当前状态的方法已成为“编写编程语言”。程序员正在这样做。

  程序员让计算机执行,并执行。该程序将整个过程固定为死亡。

  因此,要允许计算机执行特定任务,程序员必须首先完全找出任务过程。

  以Lianji电梯为例:

  不要低估这台电梯,它是“智能的”。考虑它需要做什么判断:向上和向下的方向,无论是全部员工,高峰时间,停车时间是否足够,单层和双层楼等,您都需要提前考虑所有可能性,否则您将成为错误。

  在某种程度上,程序员控制着世界。但是总是要亲吻这个东西。程序员太累了。您会看到他们在加时赛中有红眼睛。

  因此,我想:我可以让计算机自己学习并遇到问题来解决它吗?我们只需要告诉它一套学习方法即可。

  每个人都记得1997年,IBM用专门设计的计算机赢得了国际象棋冠军。实际上,它的方法是愚蠢的 - 暴力计算,该术语称为“糟糕”(实际上,为了节省计算能力,IBM手动修剪了A许多不必要的计算,例如那些明显的愚蠢国际象棋,以及针对卡的卡片的目标。Siparov的样式得到了优化)。计算机计算出每一步的每个方法,然后比较人类的国际象棋记录以找到最佳解决方案。

  一句话:剧烈的奇迹!

  但是当我到达这里时,我做不到。无关,力量有多么强大,有一个限制。GO的可能性远远超过宇宙中原子的总和(已知)。即使当前最强大的超级计算使用当前最强大的超级计算,它也是数万年的。在量子计算机成熟之前,不可能进行电子计算机。

  因此,程序员向Alpha Dog添加了额外的算法层:

  A.首先计算:在哪里计算,忽略哪里。

  B.然后,以目标方式进行计算。

  - 从本质上讲,仍然可以计算。如何有“感知”!

  在步骤A中,如何判断“在哪里计算”?

  这是“人工智能”的核心问题:“学习”的过程。

  想想人类如何学习?

  所有人类认知都来自观察到的现象的摘要,并根据摘要规则预测未来。

  当您看到一条四腿,短发,中等大小,嘴巴和吠叫动物时。如果您是狗,您将对后来看到的所有类似物体进行分类。

  但是,机器的学习方法与人类不同:

  人们可以通过观察少数特征来推动最未知的人。制定者和反击。

  该机器必须观察很多狗才能知道跑步。是狗吗?

  如此愚蠢的机器可以期望它统治人类吗?

  它只是依靠计算能力!

  具体而言,其“学习”算法是“神经网络”(更多虚张声势)。

  (功能提取器,总结对象的特征,然后将功能放入池中以集成,连接神经网络输出的完整连接的结束结论)

  它需要两个先决条件:

  1.吃很多数据以尝试和错误,并逐渐调整您的准确性;

  2.神经网络层的数量越多,计算越准确(限制),所需的计算能力就越大。

  因此,尽管它在多年前可用(当时称为“感知机”),但神经网络的方法。但是,由于数据和计算能力的量,它尚未开发。

  神经网络听起来不仅仅是意识机的感觉。我不知道高端的去向!这再次告诉我们一个好名字对研究(BI)有多重要!

  现在,两个条件都可以使用-big数据和云计算。

  目前AI公共应用领域:

  图像识别(安全识别,指纹,美容,图片搜索,医学图像诊断),使用“卷积神经网络(CNN)”,主要是提取空间维度的特征来识别图像。

  自然语言处理(人机对话,翻译)使用“环状神经网络(RNN)”,它主要提取时间维度的特征。因为前后有一个顺序,因此单词的时间决定语义。

  神经网络算法的设计水平决定了其描绘现实的能力。顶级公牛Wu Enda曾经设计了超过100层的卷积层(太多的层容易容易过度拟合问题)。

  当我们深入了解计算的含义时:有一个明确的数学定律。

  这个世界具有量子(随机)功能,它决定了计算机的理论局限性。实际上,计算机甚至无法产生真实的随机数。

  - 机器仍然很愚蠢。

  对于更多人工智能的知识,如果您想知道,您可以私下询问。

  智能制造源于人工智能的研究。人们普遍认为智能是知识和智力的总和。前者是智力的基础,后者是指获得和使用知识解决方案的能力。

  智能制造是指智能设备通过生产过程中的通信技术与生产过程自动化的有机连接。

  并通过各种感知技术在生产过程中收集各种数据,通过工业以太网等通信方法上传到工业服务器,并在工业软件系统管理下进行数据处理分析。

  结合企业资源管理软件,提供优化的生产计划或定制生产,并最终实现智能生产。

  人工智能是一种用于模拟,扩展和扩展智能的研发的新技术,方法,技术和应用系统。人工智能领域的研究包括机器人,语言识别,图像识别,自然语言处理和专家系统。

  人工智能(人工智能),英语缩写是AI。它是一种新技术,方法,技术和应用系统,用于智能理论,方法,技术和应用系统,用于模拟,扩展和扩展。

  人工智能是计算机科学的一个分支。它试图理解智力的本质,并可以生产一种可以响应人类智力的新智能机器。自然语言处理和专家系统。

  由于人工智能的诞生,理论和技术变得越来越成熟,并且应用领域正在不断扩展。可以想象,人工智能在未来带来的科学和技术产品将是人类智慧的“容器”。人工智能可以模拟人类意识和思维的信息过程。尽管人工智能不是人工智能,但它不是人类的智能,它可以像人类一样思考,最终超越人类的智慧。

  优势:

  1.在生产方面,机械和人工智能实体具有较高的效率和低成本,取代了人们的各种能力,人工劳动将被大大解放。

  2.人类的环境问题将在一定程度上得到改善,更少的资源可以满足更大的需求。

  3.人工智能可以提高人类了解世界并适应世界的能力。

  缺点:

  1.人工智能取代了人类做各种事情。人类失业率将大大增加,人类将处于无依赖生存状态。

  问题的主题和内容不是很相关。

  人工智能的原则是模拟人脑的能力,包括声音识别,图像识别,感觉,口味,触摸识别等。当前的科学和技术水平是有限的,您只能将大脑的能力分开一一学习。

  至于人类是否比自己更聪明。答案是肯定的。这是进化。孩子们必须在人类能够进步之前超越父母。基督教宣传上帝的全能者,也就是说,上帝已经完全进化了。由于在完全演变后无法超越它,因此会有一个悖论,例如“创造无法抬起的石头”。但是人类在不断发展。

  我学习电子设备,并且可以在机械和电子产品领域实现与人类相同的智能计算机。但是,对于人脑而言,当前的计算机仍然太慢了,直到技术有很大飞跃之前,它才能实现。

  在克隆领域,只能克隆。智能发展可能无法到达普通人的智商。

  如果您有任何疑问,您可以继续讨论

  结论:以上是首席CTO注释为每个人编写的人工智能制造原理的相关内容。希望它对您有所帮助!如果您解决了问题,请与更多关心此问题的朋友分享?