主要过程:
示例图显示
①匹配图像:
②模板图像
结果表明:
如果您需要更快地完成匹配,则可以尝试使用CV2.FlannBasedMatcher
选择适合的初始样品点,给出公差范围,并连续迭代
每次迭代都完成,在公差范围内都有相应的数据点,并找出最多的数据。这是最终的合适结果
用于图像更改的矩阵H通常为3 * 3。
$ h = left [开始{array} {ccc} h {11}&h {12}&h {13} h {21}&h {22}&h {22}&h {23} h {31}&h {32}&h {32}}&&&1 end {array} ight] $
以下$(x^{prime},y^{prime})$是h $(x,y)$ h $(x,y)之后转换的结果
$ left [begin {array} {c} x^{prime} y^{prime} 1 end {array} ight] = left [开始{array} {ccc} h {11}&h {12}&h {13} h {21}&h {22}&h {22}&h {23} h {31}&h {32}&h {32}&1结束{array} ight]左[开始{array} {c} x y 1结束{array} ight] $
$ left [begin {array} {c} x {1},y {1},1,0,0,0,-x {1} {1}^{prime} x {1} {1},-x {1}^prime} y {1} 0,0,0,x {1},y {1},1,-y {1}^{prime} x {1} {1},-y {1}^prime} y {1} y {1}x {2},y {2},1,0,0,0,-x {2}^{prime} x {2},-x {2}^{prime} y {2} 0,0,0,00,x {2},y {2},1,-y {2}^{prime} x {2}, - y y {2}^{prime} y {2} x {3},y {3},y {3},1,0,0,0,-x {3}^{prime} x {3},-x {3}^{prime} y {3} 0,0,0,x {3},y {3},y {3},1,-y {3}^{prime} x {3}, - y y {3}^{prime} y {3} x {4},y {4},1,0,0,0,0,-x,-x {4}^{prime} x {4},-x {4}^{prime} y {4} 0,0,0,x {4},y {4},1,-y {4}^{prime} x {4},-y {4}^{prime} y {4}结束{array} ight]左[开始{array}} h} h {11} h {12} h {} h {} h {21} h {22} h {22} h {23} h {31} h {31} h {32}结束{array}}}} ight] = left [开始{array} {c} x {1}^{prime} y {1}^{prime} x {2} {2}^{prime} y {2}^prime}^{prime} x {3} {3} {3} {3}^{prime} y {3}^{prime} x {4}^{prime} y {4}^{prime}结束{array} ight] $
通过上述分析,在投影转换之前,应至少找到4对特征点来解决转换矩阵H,因此我们应该选择最佳点以匹配竞标点
基本过程:
原始:https://juejin.cn/post/7094921186097758215