环境基础Anacondacondacreate-nonnxpython=3.8-ycondaactivateonnx#ONNX#https://github.com/onnx/onnxcondainstall-cconda-forgeonnx-ypython-c"importonnx;print(onnx.__version__)"importonnxmodel=onnx.load("model.onnx")Simplify#ONNXSimplifier#https://github.com/daquexian/onnx-simplifierpipinstallonnx-simplifierpython-monnxsim-himportonnxsimmodel_simp,检查=onnxsim.simplify(model,perform_optimization=False)assertcheck,"SimplifiedONNXmodelcouldnotbevalidated"使用ONNX模型使用的一些示例方法。提取子模型importonnxinput_path="path/to/the/original/model.onnx"output_path="path/to/save/the/extracted/model.onnx"input_names=["input_0","input_1","input_2"]output_names=["output_0","output_1"]onnx.utils.extract_model(input_path,output_path,input_names,output_names)修改输入输出名称def_onnx_rename(model,names,names_new):fornodeinmodel.graph.node:fori,ninenumerate(node.input):如果ninnames:node.input[i]=names_new[names.index(n)]fori,ninenumerate(node.output):如果ninnames:node.output[i]=names_new[names.index(n)]fornodeinmodel.graph.input:ifnode.nameinnames:node.name=names_new[names.index(node.name)]#print(model.graph.input)fornodeinmodel.graph.output:ifnode.nameinnames:node.name=names_new[names.index(node.name)]#print(model.graph.output)_onnx_rename(model,["input","output"],["input_new","output_new"])修改输入输出维度此为修改模型的。如果要修改节点,请参考onnx_cut.py中的_onnx_specify_shapes()。从onnx.toolsimportupdate_model_dimsupdate_model_dims.update_inputs_outputs_dims(model,{"input":[1,3,512,512]},{"scores":[100,1],"boxes":[100,4]})推理模型节点维度指定模型输入维度后,可以自动推断后续节点的维度。model_infer=onnx.shape_inference.infer_shapes(model)获取图属性名称索引,帮助查找具有指定名称的图属性。def_onnx_graph_name_map(graph_prop_list):m={}forningraph_prop_list:m[n.name]=nreturnmnode_map=_onnx_graph_name_map(graph.node)initializer_map=_onnx_graph_name_map(graph.initializer)input_map=_onnx_graph_name_map(graph.input=)output_map_onnx_graph_name_map(graph.output)value_info_map=_onnx_graph_name_map(graph.value_info)获取节点输入名称索引,帮助查找指定输入名称的节点列表。输出是一样的。def_onnx_node_input_map(node_list):m={}forninnode_list:forn_inputinn.input:ifn_inputinm:m[n_input].append(n)else:m[n_input]=[n]returnmnode_input_map=_onnx_node_input_map(graph.node)获取图属性的位置,辅助查找图的某个属性的列表位置。def_onnx_graph_index(graph_prop_list,prop,by_name=False):fori,ninenumerate(graph_prop_list):ifby_name:ifn.name==prop.name:returnielse:ifn==prop:returni返回-1node_i=_onnx_graph_index(graph.node,node)获取某个区间的节点,辅助查找某个区间的节点字典。def_onnx_node_between(node_beg,node_end,node_input_map):nodes={}def_between(beg,end):ifbeg.name==end.name:returnforn_outputinbeg.output:forninnode_input_map[n_output]:ifn.name==end.nameorn.nameinnodes:continuenodes[n.name]=n_between(n,end)_between(node_beg,node_end)returnnodesReplaceanode替换或修改节点的过程。fromonnximporthelpernode=graph.node[100]node_i=_onnx_graph_index(graph.node,node)graph.node.remove(node)node_new=helper.make_node('Pad',#name['X','pads','value'],#inputs['Y'],#outputsmode='constant',#attributes)graph.node.insert(node_i,node_new)模型运行推理模型运行推理,得到输出的过程。importcv2ascvimportnumpyasnpimportonnxruntimeasnxrunonnx_session=nxrun.InferenceSession("path/to/model.onnx")img=cv.imread("path/to/image.png",cv.IMREAD_COLOR)#img=img[...,::-1]#BGR>RGB#_,_,h,w=input_node.shape#BCHW#img=cv.resize(src=img,dsize=(w,h),interpolation=cv.INTER_LINEAR_EXACT)input_data=np.moveaxis(img,-1,0)#HWC>CHWinput_data=input_data[np.newaxis,:].astype(np.float32)def_get_output_names(onnx_session):names=[]fornodeinonnx_session.get_outputs():names.append(node.name)returnnamesoutput_names=_get_output_names(onnx_session)outputs=onnx_session.run(output_names,input_feed={"input":input_data})参考onnx_cut.pyONNXPythonAPIGoCoding个人实践的经验分享,可关注公众号!
